Double and bordered α -circulant self-dual codes over finite commutative chain rings

Michael Kiermaier

Department of Mathematics
Universität Bayreuth

Eleventh International Workshop on Algebraic and Combinatorial Coding Theory ACCT2008

joint work with Alfred Wassermann, Bayreuth

α -circulant matrices

Definition

- R a finite commutative ring with 1.
- $\bullet \alpha \in R$.
- Let $v = (v_0, v_1, \dots, v_{k-1}) \in R^k$. α -circulant matrix generated by v:

$$\operatorname{circ}_{\alpha}(v) = \begin{pmatrix} v_0 & v_1 & v_2 & \dots & v_{k-2} & v_{k-1} \\ \alpha v_{k-1} & v_0 & v_1 & \dots & v_{k-3} & v_{k-2} \\ \alpha v_{k-2} & \alpha v_{k-1} & v_0 & \dots & v_{k-4} & v_{k-3} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \alpha v_1 & \alpha v_2 & \alpha v_3 & \dots & \alpha v_{k-1} & v_0 \end{pmatrix}$$

- For $\alpha = 1$: circulant matrix
- For $\alpha = -1$: nega-circulant or skew-circulant matrix.

Double α -circulant codes

Definition

Let $A \in R^{k \times k} = \operatorname{circ}_{\alpha}(v)$ an α -circulant matrix. A code $C \subseteq R^{2k}$ with generator matrix $(I_k \mid A)$ is called double α -circulant code with generating word v.

C self-dual

$$\iff (I_k \mid A)(I_k \mid A)^t = 0$$

$$\iff AA^t = -I_k$$
.

The case $R = \mathbb{Z}_4$

Definition

- \mathbb{Z}_4 -linear code: submodule of \mathbb{Z}_4^n
- $\bullet \ \ \text{Lee weight} \ \textit{w}_{Lee} : \mathbb{Z}_4 \to \mathbb{N}, \left\{ \begin{array}{cc} 0 \mapsto & 0 \\ 1, 3 \mapsto & 1 \\ 2 \mapsto & 2 \end{array} \right..$
- Defined as usual: Lee weight w_{Lee} on \mathbb{Z}_4^n , Lee distance d_{Lee} on $\mathbb{Z}_4^n \times \mathbb{Z}_4^n$, minimum Lee distance of a \mathbb{Z}_4 -linear code.
- ring homomorphism "modulo 2":

$$oldsymbol{\gamma}: \mathbb{Z}_4
ightarrow \mathbb{F}_2, \left\{ egin{array}{ll} 0, 2 \mapsto & 0 \ 1, 3 \mapsto & 1 \end{array}
ight. .$$

Goal

We look for α -circulant self-dual codes C over \mathbb{Z}_4 with high minimum Lee distance!

Restrictions on the parameters

Restrictions on α

- For $\alpha \in \{0,2\}$: $d_{Lee}(C) \leq 4$.
- For $\alpha = 1$: C cannot be self-dual.
- \Rightarrow Only interesting case: $\alpha = -1$.

Restrictions on the length n

For each $c \in C$: $\sum_{i=0}^{n-1} c_i^2 = 0$

- \Rightarrow The number of units in c is a multiple of 4.
- $\Rightarrow \gamma(C)$ is a binary self-dual doubly-even code.
- \Rightarrow *n* is divisible by 8.

In the following: Let k be a fixed dimension divisible by 4, n = 2k.

V_4 and V_2

Definition

- Let V₄ ⊆ Z₄^k be the set of all words generating self-dual double nega-circulant codes over Z₄.
- Let V₂ ⊆ F₂^k be the set of all words generating self-dual doubly-even double circulant codes over F₂.

It holds: $\gamma(V_4) \subseteq V_2$.

Goal

Find (the interesting part of) V_4 .

Outline of the construction

Idea for the construction

- Construct V_2 .
- Lifting:

For each $v \in V_2$, find $\gamma^{-1}(v) \cap V_4$.

Equivalently:

Find all **lift vectors** $w \in \mathbb{F}_2^k$ such that $v + 2w \in V_4$.

Observation

The second step is time critical.

We need a fast algorithm!

The lifting step

- Given: v ∈ V₂.
 Let C̄ be the double circulant doubly-even self-dual binary code generated by v.
- Wanted: All lift vectors $w \in \mathbb{F}_2^k$ such that $v + 2w \in V_4$.
- Equivalently:

$$\sum_{i=0}^{k-1} (v+2w)_i^2 = -1_{\mathbb{Z}_4}$$

and

$$\sum_{i=0}^{k-1-t} (v+2w)_i (v+2w)_{i+t} - \sum_{i=k-t}^{k-1} (v+2w)_i (v+2w)_{i+t} = 0_{\mathbb{Z}_4}$$

for all $t \in \{1, ..., k/2\}$.

• Since \bar{C} is doubly-even \Rightarrow First equation is always true.

• Using $2^2 = 0_{\mathbb{Z}_4}$, the equations for $t \in \{1, \dots, k/2\}$ are equivalent to:

$$\underbrace{\sum_{i=0}^{k-1-t} v_i v_{i+t} - \sum_{i=k-t}^{k-1} v_i v_{i+t}}_{\text{E}=0} + 2 \sum_{i=0}^{k-1} (v_i w_{i+t} + v_{i+t} w_i) = 0_{\mathbb{Z}_4}$$

$$\equiv 0 \pmod{2}$$
since \bar{C} self-dual

• Defining $(b_1,\ldots,b_{k-1})\in\mathbb{F}_2^{k-1}$ by

$$2b_t = \sum_{i=0}^{k-1-t} v_i v_{i+t} - \sum_{i=k-t}^{k-1} v_i v_{i+t}.$$

this gives

$$2\sum_{i=1}^{k-1}(v_iw_{i+t}+v_{i+t}w_i)=2b_t \text{ for all } t\in\{1,\ldots,k/2\}$$

That leads to

$$\sum_{i=0}^{k-1} (v_i w_{i+t} + v_{i+t} w_i) = b_t$$

which is a linear system of equations for the w_i over the finite field \mathbb{F}_2 .

Conclusion

- For a given vector v ∈ V₂
 the possible lift vectors w ∈ F₂^k can be computed by solving a linear system of equations over F₂.
- The dimension of the solution space is k/2.

Group operation

Lemma (compare MacWilliams/Sloane 1977)

Let $\sigma: \mathbb{Z}_4^k \to \mathbb{Z}_4^k$ a mapping of one of the following types:

- \circ $\sigma(\mathbf{v}) = -\mathbf{v}$.
- $\sigma(v)$ is a cyclic shift of v.
- There is an $s \in \{1, ..., k-1\}$ with gcd(s, k) = 1 such that for all $i: \sigma(v)_i = v_{si}$

Then the nega-circulant codes generated by the vectors v and $\sigma(v)$ are equivalent.

Definition

Let G be the group generated by these mappings σ .

Updated algorithm

Observation

- G operates on V₄.
 One representative of each orbit is enough!
- $\gamma(G)$ operates on V_2 .

Updated construction algorithm

- Construct exactly one representative of each orbit under the action of γ(G) on V₂.
- **Lifting:** For each such $\gamma(G)$ -representative v, find a representative of all G-orbits on the lift vectors $w \in \mathbb{F}_2^k$ with $v + 2w \in V_4$.

Lifting and the minimum distance

Lemma

Let C be a \mathbb{Z}_4 -linear code. It holds:

$$d_{\operatorname{Ham}}(\gamma(C)) \leq d_{\operatorname{Lee}}(C) \leq 2d_{\operatorname{Ham}}(\gamma(C))$$

Updated lifting step

- During the algorithm: The variable δ stores the best minimum Lee distance found so far.
- **Lifting:** Run through the $\gamma(G)$ -representatives v of V_2 , ordered by decreasing minimum Hamming weight $d_2(v)$ of the binary code generated by v. As soon as $d_2(v) \leq \delta$, we are finished.

Results

Best possible Lee distances among **all** self-dual \mathbb{Z}_4 -linear self-dual codes of the respective type:

Bordered circulant: Generated by

$$\begin{pmatrix} & \alpha & \beta \cdots \beta \\ & \gamma & \\ I_k & \vdots & A \\ & \gamma & \end{pmatrix}$$

where A is $(k-1) \times (k-1)$ circulant, and α, β, γ suitable.

Concluding remarks

Remarks

- Most computation time goes into the computation of the minimum Lee distances.
 - A fast algorithm was crucial.
 - For n = 64: About 10 times faster than the algorithm in Magma.
- This algorithm allowed us to compute some previously unknown minimum Lee distances of Z₄-linear QR-codes.

Generalizations of the construction method

- Instead of only Z₄:
 Can be done for all finite commutative chain rings.
 Example Z₈: Two nested lifting steps F₂ → Z₄ → Z₈.
- Direct adaption to bordered circulant α -circulant self-dual codes.

Results
Concluding remarks
Generalizations

Thanks for your attention!