Double and bordered α-circulant self-dual codes over finite commutative chain rings

Michael Kiermaier

Department of Mathematics
Universität Bayreuth
Eleventh International Workshop on Algebraic and Combinatorial Coding Theory ACCT2008
joint work with Alfred Wassermann, Bayreuth

α-circulant matrices

Definition

- R a finite commutative ring with 1.
- $\alpha \in R$.
- Let $v=\left(v_{0}, v_{1}, \ldots, v_{k-1}\right) \in R^{k}$.
α-circulant matrix generated by v :

$$
\operatorname{circ}_{\alpha}(v)=\left(\begin{array}{cccccc}
v_{0} & v_{1} & v_{2} & \ldots & v_{k-2} & v_{k-1} \\
\alpha v_{k-1} & v_{0} & v_{1} & \ldots & v_{k-3} & v_{k-2} \\
\alpha v_{k-2} & \alpha v_{k-1} & v_{0} & \ldots & v_{k-4} & v_{k-3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\alpha v_{1} & \alpha v_{2} & \alpha v_{3} & \ldots & \alpha v_{k-1} & v_{0}
\end{array}\right)
$$

- For $\alpha=1$: circulant matrix
- For $\alpha=-1$: nega-circulant or skew-circulant matrix.

Double α-circulant codes

Definition

Let $A \in R^{k \times k}=\operatorname{circ}_{\alpha}(v)$ an α-circulant matrix. A code $C \subseteq R^{2 k}$ with generator matrix $\left(I_{k} \mid A\right)$ is called double α-circulant code with generating word v.
C self-dual
$\Longleftrightarrow\left(I_{k} \mid A\right)\left(I_{k} \mid A\right)^{t}=0$
$\Longleftrightarrow A A^{t}=-I_{k}$.

The case $R=\mathbb{Z}_{4}$

Definition

- \mathbb{Z}_{4}-linear code: submodule of \mathbb{Z}_{4}^{n}
- Lee weight $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N},\left\{\begin{array}{rl}0 & \mapsto \\ 1,3 & 0 \\ 2 & 1\end{array}\right.$.
- Defined as usual: Lee weight $w_{\text {Lee }}$ on \mathbb{Z}_{4}^{n}, Lee distance $d_{\text {Lee }}$ on $\mathbb{Z}_{4}^{n} \times \mathbb{Z}_{4}^{n}$, minimum Lee distance of a \mathbb{Z}_{4}-linear code.
- ring homomorphism "modulo 2 ":

$$
\gamma: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2},\left\{\begin{array}{cc}
0,2 \mapsto & 0 \\
1,3 \mapsto & 1
\end{array} .\right.
$$

Goal

We look for α-circulant self-dual codes C over \mathbb{Z}_{4} with high minimum Lee distance!

Restrictions on the parameters

Restrictions on α

- For $\alpha \in\{0,2\}: d_{\text {Lee }}(C) \leq 4$.
- For $\alpha=1$: C cannot be self-dual.
- \Rightarrow Only interesting case: $\alpha=-1$.

Restrictions on the length n

For each $c \in C: \sum_{i=0}^{n-1} c_{i}^{2}=0$
\Rightarrow The number of units in c is a multiple of 4 .
$\Rightarrow \gamma(C)$ is a binary self-dual doubly-even code.
$\Rightarrow n$ is divisible by 8 .
In the following: Let k be a fixed dimension divisible by 4 , $n=2 k$.

V_{4} and V_{2}

Definition

- Let $V_{4} \subseteq \mathbb{Z}_{4}^{k}$ be the set of all words generating self-dual double nega-circulant codes over \mathbb{Z}_{4}.
- Let $V_{2} \subseteq \mathbb{F}_{2}^{k}$ be the set of all words generating self-dual doubly-even double circulant codes over \mathbb{F}_{2}.

It holds: $\gamma\left(V_{4}\right) \subseteq V_{2}$.

Goal

Find (the interesting part of) V_{4}.

Outline of the construction

Idea for the construction

- Construct V_{2}.
- Lifting:

For each $v \in V_{2}$, find $\gamma^{-1}(v) \cap V_{4}$.
Equivalently:
Find all lift vectors $w \in \mathbb{F}_{2}^{k}$ such that $v+2 w \in V_{4}$.

Observation

The second step is time critical. We need a fast algorithm!

The lifting step

- Given: $v \in V_{2}$.

Let \bar{C} be the double circulant doubly-even self-dual binary code generated by v.

- Wanted: All lift vectors $w \in \mathbb{F}_{2}^{k}$ such that $v+2 w \in V_{4}$.
- Equivalently:

$$
\sum_{i=0}^{k-1}(v+2 w)_{i}^{2}=-1_{\mathbb{Z}_{4}}
$$

and

$$
\sum_{i=0}^{k-1-t}(v+2 w)_{i}(v+2 w)_{i+t}-\sum_{i=k-t}^{k-1}(v+2 w)_{i}(v+2 w)_{i+t}=0_{\mathbb{Z}_{4}}
$$

for all $t \in\{1, \ldots, k / 2\}$.

- Since \bar{C} is doubly-even \Rightarrow First equation is always true.
- Using $2^{2}=0_{\mathbb{Z}_{4}}$, the equations for $t \in\{1, \ldots, k / 2\}$ are equivalent to:

$$
\underbrace{\sum_{i=0}^{k-1-t} v_{i} v_{i+t}-\sum_{i=k-t}^{k-1} v_{i} v_{i+t}}_{\begin{array}{c}
\equiv 0(\bmod 2) \\
\text { since } \bar{C} \text { self-dual }
\end{array}}+2 \sum_{i=0}^{k-1}\left(v_{i} w_{i+t}+v_{i+t} w_{i}\right)=0_{\mathbb{Z}_{4}}
$$

- Defining $\left(b_{1}, \ldots, b_{k-1}\right) \in \mathbb{F}_{2}^{k-1}$ by

$$
2 b_{t}=\sum_{i=0}^{k-1-t} v_{i} v_{i+t}-\sum_{i=k-t}^{k-1} v_{i} v_{i+t}
$$

this gives

$$
2 \sum_{i=0}^{k-1}\left(v_{i} w_{i+t}+v_{i+t} w_{i}\right)=2 b_{t} \quad \text { for all } t \in\{1, \ldots, k / 2\}
$$

- That leads to

$$
\sum_{i=0}^{k-1}\left(v_{i} w_{i+t}+v_{i+t} w_{i}\right)=b_{t}
$$

which is a linear system of equations for the w_{i} over the finite field \mathbb{F}_{2}.

Conclusion

- For a given vector $v \in V_{2}$
the possible lift vectors $w \in \mathbb{F}_{2}^{k}$ can be computed
by solving a linear system of equations over \mathbb{F}_{2}.
- The dimension of the solution space is $k / 2$.

Group operation

Lemma (compare MacWilliams/Sloane 1977)

Let $\sigma: \mathbb{Z}_{4}^{k} \rightarrow \mathbb{Z}_{4}^{k}$ a mapping of one of the following types:

- $\sigma(v)=-v$.
- $\sigma(v)$ is a cyclic shift of v.
- There is an $s \in\{1, \ldots, k-1\}$ with $\operatorname{gcd}(s, k)=1$ such that for all $i: \sigma(v)_{i}=v_{s i}$
Then the nega-circulant codes generated by the vectors v and $\sigma(v)$ are equivalent.

Definition

Let G be the group generated by these mappings σ.

Updated algorithm

Observation

- Goperates on V_{4}.

One representative of each orbit is enough!

- $\gamma(G)$ operates on V_{2}.

Updated construction algorithm

- Construct exactly one representative of each orbit under the action of $\gamma(G)$ on V_{2}.
- Lifting: For each such $\gamma(G)$-representative \boldsymbol{v}, find a representative of all G-orbits on the lift vectors $w \in \mathbb{F}_{2}^{k}$ with $v+2 w \in V_{4}$.

Lifting and the minimum distance

Lemma

Let C be a \mathbb{Z}_{4}-linear code. It holds:

$$
d_{\text {Ham }}(\gamma(C)) \leq d_{\text {Lee }}(C) \leq 2 d_{\text {Ham }}(\gamma(C))
$$

Updated lifting step

- During the algorithm:

The variable δ stores the best minimum Lee distance found so far.

- Lifting: Run through the $\gamma(G)$-representatives v of V_{2}, ordered by decreasing minimum Hamming weight $d_{2}(v)$ of the binary code generated by v. As soon as $d_{2}(v) \leq \delta$, we are finished.

Results

Best possible Lee distances among all self-dual \mathbb{Z}_{4}-linear self-dual codes of the respective type:

n	8	16	24	32	40	48	56	64
double nega-circulant	6	8	12	14	14	18	16	20
bordered circulant	6	8	12	14	14	18	18	20

Bordered circulant: Generated by

$$
\left(\begin{array}{ccc}
& \alpha & \beta \cdots \beta \\
& \gamma & \\
I_{k} & \vdots & \boldsymbol{A} \\
& \gamma &
\end{array}\right)
$$

where A is $(k-1) \times(k-1)$ circulant, and α, β, γ suitable .

Concluding remarks

Remarks

- Most computation time goes into the computation of the minimum Lee distances.
A fast algorithm was crucial.
For $n=64$: About 10 times faster than the algorithm in Magma.
- This algorithm allowed us to compute some previously unknown minimum Lee distances of \mathbb{Z}_{4}-linear QR-codes.

Generalizations of the construction method

- Instead of only \mathbb{Z}_{4} :

Can be done for all finite commutative chain rings. Example \mathbb{Z}_{8} : Two nested lifting steps $\mathbb{F}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{8}$.

- Direct adaption to bordered circulant α-circulant self-dual codes.

Thanks for your attention!

